What is Vibration and What are the Types of Vibration?
Vibration is a physical phenomenon that presents itself in operational rotating machineries and moving structures, regardless of the condition of their health. Vibration can be induced by various sources, including rotating shafts, meshing gear-teeth, rolling bearing elements, rotating electric field, fluid flows, combustion events, structural resonance and angular rotations. Because of its ubiquity, vibration is highly applicable for investigating the operational conditions and status of rotating machinery and structures.
Vibrations can be represented in different forms, including displacement, velocity and acceleration. Displacement describes the distance that the measuring point has moved; velocity describes how fast the movement is; and acceleration is self-explanatory. The three types are all widely used, specifically acceleration, which offers the widest frequency range and is extensively applied for dynamic fault analysis.
How Do You Measure Vibration?
Vibration can be measured through various types of sensors. Based on different types of vibrations, there are sensors designed to measure displacement, velocity and acceleration, with different measuring technologies, such as piezoelectric (PZT) sensors, microelectromechanical sensors (MEMS), proximity probes, laser Doppler vibrometer and many others.
PZT sensors, the most commonly used sensor, generate voltages when deformed. The voltage signals can be digitalised and translated to represent the vibrations. When selecting suitable vibration sensors, the vibration levels/dynamic range and maximum frequency range/bandwidth should be considered, as well as the other operating environment such as temperature, humidity and pH level.
Sensor installation is critical for ensuring that high quality data is recorded. The recommended method for installing sensors is to stud mount the sensor on a flat and clean surface on the machine. This ensures that a broad and smooth frequency spectrum is captured. When stud mount is not applicable, magnet holders, wax or glue can be adopted as substitutions with vibration levels and frequencies considered.
Vibration signals are usually below 20 kHz, except for certain vibration resonances that can reach beyond that. In practice, the sampling rate should be carefully chosen, to make sure that the bandwidth containing frequencies of interest are captured. Additionally, the recording length for one measurement should be at least several periods of the lowest speed of the machines.